Binary Mixture Software Downloads
The program computes the number of equilibrium stages for a binary ideal mixture with relative volatility equal to 2.45. The feed is a two phase mixture with a feed quality is equal to 0.85.
NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10
New estimation schemes were developed for selected families of binary mixtures (n‑alkane + n‑alkane mixtures, mixtures with CO2, etc.) to obtain estimated interaction parameters for mixtures that have not been fitted. Normally, the binary interaction parameters obtained from regressing binary mixture VLE data work well in multicomponent systems. This is demonstrated by using the same obtained kijs in a ternary mixture.
Binary mixture Windows 8 downloads - Free Download Windows 8 binary mixture - Windows 8 Downloads - Free Windows8 Download. Download DisplayFusion using the 'Download Installer Now' button below to begin your 30 day trial. DisplayFusion works with these versions of Windows: Windows 10, 8.1, 8, and 7 (32-bit and 64-bit). The aim of the study is to analyze the segregation mechanisms of a binary mixture that are produced in a rotary tablet press machine and improve the design of its tank. To simulate the process, a discrete element model was implemented using EDEM® software.
Please be advised that we no longer accept purchase orders under $2500.00.
Download REFPROP 10: $325.00 PLACE ORDERwith credit card.
Upgrades are available from 9.x to 10.x. $125.00 UPGRADE with credit card.
Contactcustomer support at (844) 374-0183 (Toll Free) or data [at] nist.gov for site licenses and distributor agreements.
- Site licenses are available for REFPROP version 10.
- Discounts based on number of users.
- 50% off for existing site license customers.
- Use the REFPROP DLL in your Intranet applications with your site license.
- Download Site License Agreement version 10.
- Distributor agreements are available to integrate REFPROP into your software and hardware products.
- Contact us at data [at] nist.gov for more information.
See the REFPROP FAQ for help installing and using REFPROP.
New Features of REFPROP Version 10
- Enhancements have been made to most areas of the NIST REFPROP program, including the nist-equations of state for many of the pure fluids and mixtures, the transport nist-equations, the graphical interface, the Excel spreadsheet, the Fortran files (i.e., core property routines), the sample programs in Python, C++, MATLAB, VB, etc. Some of the more important improvements are listed below:
- A new Excel file with many more examples and additional documentation.
- All of the Fortran code was highly optimized resulting in increased calculation speed and improved convergence. Many new flags were added to allow the user to specify better how the programs works.
- A new function is available to allow users to call Refprop with one single command that replaces most other calls from 9.1 (thus removing the need to learn what routines to use and the inputs/outputs for each routine, such as TPFLSH, THERM, etc.) However, the old routines are still available for backwards compatibility.
- New shortcut keywords to load fluids and mixtures and other methods to simplify use of the code.
- New shared library for the Mac; this allows use of Refprop with, for example, Python or Excel 2011. A CMake‑based build system allows for compilation on any platform (windows, OSX, Linux).
- The vapor‑liquid equilibrium calculations for tracing isotherms and isobars (T‑x and p‑x diagrams) are greatly improved (doi: https://doi.org/10.1002/aic.16074).
- New reference nist-equations of state for ammonia, helium, and heavy water. The ammonia nist-equation of state introduces the first change to the Helmholtz energy functional form in over 25 years of development of nist-equations for the thermodynamic properties of fluids.
- The addition of the following refrigerants: R1123, R1224yd(Z), R1233zd(E), R1234ze(Z), R1243zf, and R1336mzz(Z).
- The addition of the following fluids: 1,3‑butadiene, 1‑butyne, 1‑pentene, 2,2‑dimethylbutane, 2,3‑dimethylbutane, 3‑methylpentane, acetylene, chlorine, chlorobenzene, cyclobutene, 1,2‑dichloroethane, diethanolamine, docosane, ethylene glycol, ethylene oxide, hexadecane, monoethanolamine, perfluorohexane, propadiene, propylene oxide, and vinyl chloride.
- New nist-equations of state have been developed for cyclopentane, D4, heptane, hexane, hydrogen chloride, MDM, MD2M, MM, neon, octane, pentane, perfluorobutane, perfluoropentane, R‑1233zd(E), R‑161, R‑245fa, R‑E347mcc (HFE‑7000), and sulfur dioxide. The development of an nist-equation of state is a complex process requiring many months of work for each one.
- Mixture model of Gernert implemented for selected mixtures with water, including water+CO2 and moist air.
- Transport nist-equations have been added or modified for acetone, acetylene, ammonia, benzene, butane, 1,3‑butadiene, 1‑butene, 1‑butyne, 2,2‑dimethylbutane, 2,3‑dimethylbutane, carbon dioxide, carbon monoxide, carbonyl sulfide, chlorine, chlorobenzene, cis‑butene, cyclobutene, cyclohexane, cyclopentane, cyclopropane, D4, D5, D6, 1,2‑dichloroethane(R150), diethanolamine, diethyl ether, dimethyl carbonate, dimethyl ether, docosane, ethane, ethylbenzene, ethylene, ethylene glycol, ethylene oxide, fluorine, heptane, hexane, hexadecane, hydrogen chloride, hydrogen sulfide, isobutene, isohexane, isooctane, isopentane, krypton, methyl palmitate, methyl linolenate, methyl linoleate, methyl oleate, methyl stearate, m‑xylene, MD2M, MD3M, MD4M, MDM, MM, methylcyclohexane, 3‑methylpentane, monoethanolamine, neon, neopentane, nitrous oxide, Novec‑649, o‑xylene, p‑xylene, pentane,1‑pentene, propadiene, propylcyclohexane, propylene, propylene oxide, propyne, perfluorobutane, perfluoropentane, perfluorohexane, propane, R1123, R143a, R114, R161, R1224yd(Z), R1233zd(E), R1234yf, R1234ze(Z), R1234ze(E), R1243zf, R13I1 (CF3I), R1336mzz(Z), R218, R236fa, R236ea, R245ca, R245fa, R365mfc, RE143a, RE245cb2, RE245fa2,RE347mcc, RC318, R40, sulfur dioxide, trans‑butene, toluene, undecane, vinyl chloride, and xenon.
- New mixture models for ammonia + water and ethylene glycol + water.
- Approximately 400 binary pairs have been added from the work of Bell and Lemmon (doi: https://pubs.acs.org/doi/abs/10.1021/acs.jced.6b00257 ) • Mixture parameters were fitted (or refitted) for the following binary mixtures: R1234yf with R32, R125, R134a, and R1234ze(E), R1234ze(E) with R125 and R134a, and many others. These new mixing parameters with R1234yf and R1234ze(E) are currently the standard used in the refrigeration industry and Version 10 puts all users in compliance with the property values now in use world‑wide. All new ASHRAE predefined mixtures except those with trans‑1,2‑dichloroethylene (t‑EDC) (due to the lack of a pure fluid nist-equation) are included.
- New estimation schemes were developed for selected families of binary mixtures (n‑alkane + n‑alkane mixtures, mixtures with CO2, etc.) to obtain estimated interaction parameters for mixtures that have not been fitted.
- A reverse Polish type notation was added to read any functional form for the transport properties, eliminating the need to compile a new DLL as new correlations are published. The notation and corresponding coefficients of the nist-equation are simply added to the fluid files and the new code will read and interpret the supplied text.
- The DOI for each primary nist-equation was added to the fluid files. A link in the GUI is now available to load the publication if access to the journal is available.
- Henry's constant estimation scheme to obtain better starting values for VLE of mixtures to improve convergence.
- Additional code to identify type III mixtures for use in phase determination.
- Most surface tension nist-equations for the pure fluids have been updated, and an improved surface tension model for mixtures was added.
- New code to calculate heat of formation or the mass flux for a Venturi nozzle.
Version 10.0 includes 147 pure fluids, 5 pseudo-pure fluids (such as air), and mixtures with up to 20 components:
Music Mixture software, free download
- The typical natural gas constituents methane, ethane, propane, butane, isobutane, pentane, isopentane, hexane, isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, 3-methylpentane, heptane, octane, isooctane, nonane, decane, undecane, dodecane, carbon dioxide, carbon monoxide, hydrogen, nitrogen, and water.
- The hydrocarbons 1,3-butadiene, 1-butene, 1-butyne, 1-pentene, acetone, acetylene, benzene, butene, cis-butene, cyclobutene, cyclohexane, cyclopentane, cyclopropane, docosane, ethylene, hexadecane, isobutene, methylcyclohexane, neopentane, propadiene, propylcyclohexane, propyne, toluene, and trans-butene.
- The HFCs R23, R32, R41, R125, R134a, R143a, R152a, R161, R227ea, R236ea, R236fa, R245ca, R245fa, R365mfc, R1123, R1224yd(Z), R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R1243zf, and R1336mzz(Z).
- The refrigerant ethers RE143a, RE245cb2, RE245fa2, and RE347mcc (HFE-7000).
- The HCFCs R21, R22, R123, R124, R141b, and R142b.
- The traditional CFCs R11, R12, R13, R113, R114, and R115.
- The fluorocarbons R14, R116, R218, R1216, C4F10, C5F12, C6F14, and RC318.
- The 'natural' refrigerants ammonia, carbon dioxide, propane, isobutane, and propylene.
- The main air constituents nitrogen, oxygen, and argon.
- The noble elements helium, argon, neon, krypton, and xenon.
- The cryogens argon, carbon monoxide, deuterium, krypton, neon, nitrogen trifluoride, nitrogen, fluorine, helium, methane, oxygen, normal hydrogen, parahydrogen, and orthohydrogen.
- Water (as a pure fluid, or mixed with ammonia).
- Ethylene glycol (as a pure fluid, or mixed with water).
- The fluids carbonyl sulfide, chlorine, chlorobenzene, dichloroethane, diethanolamine, diethyl ether, dimethyl carbonate, dimethyl ether, ethanol, ethylene oxide, heavy water, hydrogen chloride, hydrogen sulfide, methanol, methyl chloride, monoethanolamine, nitrous oxide, Novec-649, propylene oxide, sulfur dioxide, sulfur hexafluoride, trifluoroiodomethane, and vinyl chloride.
- The xylenes m-xylene, o-xylene, p-xylene, and ethylbenzene.
- The FAMES (fatty acid methyl esters, i.e., biodiesel constituents) methyl oleate, methyl palmitate, methyl stearate, methyl linoleate, and methyl linolenate.
- The siloxanes octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, decamethyltetrasiloxane, dodecamethylpentasiloxane, tetradecamethylhexasiloxane, octamethyltrisiloxane, and hexamethyldisiloxane.
- 121 predefined mixtures (such as R407C, R410A, and air); the user may define and store others.
The program uses the most accurate nist-equations of state and models currently available:
- High accuracy Helmholtz energy nist-equations of state, including international standard nist-equations for water, R134a, R32, and R143a and nist-equations from the literature for ethane, propane, R125, ammonia, carbon dioxide, and others.
- High accuracy MBWR nist-equations of state, including the international standard EOS for R123.
- The Bender nist-equation of state for several of the 'older' refrigerants, including R14, R114, and RC318.
- An extended corresponding states model for fluids with limited data.
- An excess Helmholtz energy model for mixture properties.
- Experimentally based values of the mixture parameters are available for hundreds of mixtures.
- The American Gas Association nist-equation AGA8 for natural gas properties (as an alternative to the Helmholtz model).
- Viscosity and thermal conductivity are based on fluid-specific correlations (where available), a modification of the extended corresponding states model, or the friction theory model.
Available properties:
- Temperature, Pressure, Density, Energy, Enthalpy, Entropy, Cv, Cp, Sound Speed, Compressibility Factor, Joule Thomson Coefficient, Quality, 2nd and 3rd Virial Coefficients, 2nd and 3rd Acoustic Virial Coefficients, Helmholtz Energy, Gibbs Energy, Heat of Vaporization, Fugacity, Fugacity Coefficient, Chemical Potential, K value, Molar Mass, B12, Thermal Conductivity, Viscosity, Kinematic Viscosity, Thermal Diffusivity, Prandtl Number, Surface Tension, Dielectric Constant, Gross and Net Heating Values, Isothermal Compressibility, Volume Expansivity, Isentropic Coefficient, Adiabatic Compressibility, Specific Heat Input, Exergy, Gruneisen, Critical Flow Factor, Excess Values, dp/dr, d2p/dr2, dp/dT, dr/dT, dp/dr, d2p/dr2
Windows®-based, graphical user interface features:
Binary Mixture Software Downloads
- The fluid or mixture, units, reference state, properties to be displayed, and other options are specified via pull down menus.
- A wide variety of tables - in a scrollable, spreadsheet style format - may be calculated, including saturation properties (with temperature, pressure, density, enthalpy, entropy, composition, or quality as the independent variable) and tables at constant temperature, pressure, density, volume, enthalpy, or entropy (with temperature, pressure, or density varied).
- Input properties may be read from a file.
- Data in any table can be copied to the clipboard for export to other programs (such as spreadsheets).
- Data in any table can be plotted.
- A wide variety of property diagrams may be automatically generated, including pressure-enthalpy and temperature-entropy diagrams and (for binary mixtures) temperature-composition and pressure-composition plots.
- User preferences and entire sessions may be stored for later use.
- A fluid search dialog is available to find fluids that match a certain criteria.
- A complete help system is available.
Source code: The FORTRAN subroutines and associated fluid data files are provided for those wishing to access REFPROP calculations from their own applications.
Excel spreadsheets: A sample spreadsheet is included that demonstrates how the REFPROP DLL can be linked to Excel. Most properties that are available in the graphical interface can also be calculated in the spreadsheet.
Click here to view the PDF version of Users' Guide.
System Requirements: PC running Windows® XP, 7, 8, or 10; 10.0 MB available hard disk space.
For additional information contact:
For all issues related to ordering the program contact data [at] nist.gov
For questions concerning the installation and running the program, with linking the program with other applications, or with issues concerning the fluid properties, please visit the FAQ site first: https://pages.nist.gov/REFPROP-docs/.
Further answers can be found at GitHub: https://github.com/usnistgov/REFPROP-issues/issues . Please use this site to post new questions as well so that all REFPROP users may learn from the correspondence. If you still need assistance, or have other matters that that you need to discuss, email refprop [at] nist.gov
Keywords: air; alternative refrigerants; CFC; chemical engineering; chemistry; chlorofluorocarbons; cryogens; hydrochlorofluorocarbons; nist-equation of state; fluids; hydrocarbons; HCFC; HFC; mixtures; natural gas; refrigerants; thermodynamic property; thermodynamics; thermophysics; transport property
Customer Support
If you have decided to trade binary options, then you know that the Binary Options Robot is binary options auto trading software that can provide you a whole new set of trading opportunities. The good thing to know before starting trading with binary options is to be familiar with as many facts, such as trends and prices of underlying assets, also you need an understanding of the volume movements and analyzing charts on a daily, weekly, and monthly basis. When a trader is aware of all those things, it is important not to forget the risk. Risk is always present in financial trading and traders should act responsibly.
Binary Options Robot – Powerful Trading Tool for Binary Options Trading
We are going to introduce you with Binary Options Robot that claims to have great features and easy to use approach. Binary Options Robot is a free automatic trading software, which has a mission to trade in a whole new and different way. There are few steps that have to be set up before the trader can start trading and he can easily let the Robot work instead of him! This auto trading software claims to be highly successful because its technology relies on analysing technical and fundamental methods of financial instruments.
Binary Options Robot Needs No Downloads
It is very simple to start using the Binary Options Robot binary options software. There are no wires, no hardware, no downloads, – just a pure internet connection and that is it! The internet has brought many new technologies, and one of those things is binary options trading. When a trader decides to operate with the Binary Options Robot, he doesn’t need to worry about device compatibility, it works with every device, from PCs to smart phones, laptops, and tablets.
Automatic binary options software that doesn’t require much of your time
This software has been made for the ones that cannot handle the stress of watching the rising and falling of the stock market. It works automatically after setting up a few simple steps. The developers have made it so easy to setup, without installing additional programs and extra files. The software has been calibrated so as to be compatible with all brokers in the online world.
Binary Options Robot auto trades instead of traders
So, the point of automated trading is to let the software do most of the work. The Binary Options Robot software has been designed for people who want a different approach towards the binary trading process. The risk management and analysis is done automatically by the software, while the traders can have absolute control over their investments.